Insertion Sort
INSERTION-SORT(A)
for i = 1 to n
key ← A [i]
j ← i – 1
while j > = 0 and A[j] > key
A[j+1] ← A[j]
j ← j – 1
End while
A[j+1] ← key
End for
# Insertion Sort in Ruby
def insertion_sort(array)
(1..array.size - 1 ).each do |i|
position = array[i]
j = i-1
while (j >= 0 && array[j] > position)
array[j+1] = array[j]
j = j - 1
end
array[j+1] = position
end
array
end
p insertion_sort([12,21,32,7,2])
Worst Case Time Complexity [ Big-O ]: O(n2)
Best Case Time Complexity [Big-omega]: O(n)
Average Time Complexity [Big-theta]: O(n2)
Merge Sort
# Merge Sort in Ruby
def merge(array1, array2)
iter1=iter2=iter=0
result = []
while(iter1 < array1.size || iter2 < array2.size)
if(iter1 >= array1.size)
result[iter] = array2[iter2]
iter2=iter2+1
elsif(iter2 >= array2.size)
result[iter] = array1[iter1]
iter1 = iter1+1
elsif(array1[iter1] < array2[iter2])
result[iter] = array1[iter1]
iter1 = iter1+1
else
result[iter] = array2[iter2]
iter2=iter2+1
end
iter=iter+1
end
result
end
def merge_sort(array)
return array if (array.size == 1)
mid = (array.size/2.0).round
split_array = array.each_slice(mid).to_a
array1 = split_array[0]
array2 = split_array[1]
array1 = merge_sort(array1)
array2 = merge_sort(array2)
return merge(array1, array2)
end
p merge_sort([12,21,32,7,2,34])
Time Complexity : Ο(n log n)
Space Complexity : O(n)
Quick Sort
# Quick Sort in Ruby
def partition(array, low, high)
pivot = array[high]
i = low -1
(low..high-1).each do |j|
if(array[j] <= pivot)
i = i+1
temp = array[i]
array[i] = array[j]
array[j] = temp
end
end
temp = array[i+1]
array[i+1] = array[high]
array[high] = temp
return i+1
end
def quick_sort(array, low, high)
if (low < high)
index = partition(array, low, high)
quick_sort(array, low, index-1)
quick_sort(array, index+1, high)
end
end
array = [12,21,32,7,2,14]
quick_sort(array, 0, array.size-1)
p array
Time Complexity : O(n2)
Space Complexity : In-Place
Problem:
Given a non-negative number represented as an array of digits, add 1 to the number ( increment the number represented by the digits ).The digits are stored such that the most significant digit is at the head of the list.
Example:
If the vector has
the returned vector should be
as
Example:
If the vector has
[1, 2, 3]
the returned vector should be
[1, 2, 4]
as
123 + 1 = 124
.class Solution
# @param a : array of integers
# @return an array of integers
def plusOne(a)
num = a.join.to_i+1
num.to_s.split('')
end
end